Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
iScience ; 2022.
Article in English | EuropePMC | ID: covidwho-2092880

ABSTRACT

To overcome the increased risk of SARS-CoV-2 reinfection or post-vaccination infection caused by the Omicron variant, Omicron-specific vaccines were considered a potential strategy. We reported the increased magnitude and breadth of antibody response against VOCs elicited by post-vaccination Delta and Omicron infection, compared to WT infection without vaccination. Then, in mouse models, three doses of Omicron-RBD immunization elicited comparable neutralizing antibody (NAb) titers with three doses of WT-RBD immunization, but the neutralizing activity was not cross-active. By contrast, a heterologous Omicron-RBD booster following two doses of WT-RBD immunization increased the NAb titers against Omicron by 9 folds than the homologous WT-RBD booster. Moreover, it retains neutralization against both WT and current VOCs. Results suggest that Omicron-specific subunit booster shows its advantages in the immune protection from both WT and current VOCs and that SARS-CoV-2 vaccines including two or more virus lineages might improve the NAb response. Graphical

2.
Sustainability ; 14(12):6952, 2022.
Article in English | ProQuest Central | ID: covidwho-1911532

ABSTRACT

Sustainable entrepreneurship is an economic activity that integrates entrepreneurial activities with environmental and social sustainability, which is a frontier research field that integrates the triple bottom line of economy, environment, and society. A comprehensive survey was conducted in this study by collecting data from 203 potential entrepreneurs in China, such as employees with work experience, freelancers, and college students, by means of a questionnaire in March 2022. Structural equation modeling (SEM) was employed to investigate the research hypotheses considered, testing the impact of entrepreneurial intention on sustainable entrepreneurial behavior from the perspective of risk perception and institutional environment. The reliability and validity of the measurements are demonstrated. The outcomes from the conducted analyses show that entrepreneurial intention and risk perception do not directly affect sustainable entrepreneurial behavior, while entrepreneurial intention significantly affects risk perception. Moreover, risk perception serves a mediating role in the relationship between entrepreneurial intention and sustainable entrepreneurship. The institutional environment positively predicts sustainable entrepreneurship behavior and could even have a greater effect by reducing risk perception. Hence, this study suggests that the government should provide policy and financial support to create an open, stable, and inclusive institutional environment, to reduce the cost and risk of innovation and entrepreneurship. At the same time, it also provides theoretical and practical references for potential entrepreneurs to improve their entrepreneurial intention and carry out sustainable entrepreneurial behavior.

3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3710744

ABSTRACT

The resurgence of coronavirus disease 2019 (COVID-19) has been seen in many counties where outbreaks appear to be leveling off. While China experienced a dramatic decline of COVID-19 at the outset of 2020, regional outbreaks continuously emerged in recent months. In Guangzhou, a small outbreak emerged in March and April involving less than 100 residents, and a comprehensive and near-real-time genomic surveillance of SARS-CoV-2 was conducted. When confirmed cases among overseas travelers increased, public health authorities enhanced measures as shifting self-quarantine to central quarantine and SARS-CoV-2 testing for all overseas travelers. From 109 imported cases we found diverse viral variants distributing in the global viral phylogeny, which were usually shared within households but not among passengers on the same flight. Nonetheless, local transmission was predominately attributed to two specific variants imported from Africa, including the local cases who reported no direct/indirect contact with imported cases. The introducing events of the virus were identified or deduced before enhanced measures were taken. These results show that the interventions are effective in containing the spread of SARS-CoV-2, and also rule out the possibility of cryptic transmission of viral variants from the first wave in January and February. Moreover, we found that intra-host viral diversity was usually different between close contacts, implying a transmission bottleneck of SARS-CoV-2. Our study provides evidence and emphasizes the importance of controls for oversea travelers in the context of the pandemic, and exemplifies how viral genomic data facilitates COVID-19 surveillance and prevention.Funding: This study was supported by National Natural Science Foundation of China (31870079, 91953122, 31871326), National Science and Technology Major Project of the Ministry of Science and Technology of China (2017ZX10103011, 2018ZX10305410, 2018ZX10201001), Guangdong Provincial Novel Coronavirus Scientific and Technological Project (2020111107001), Guangdong Basic and Applied Basic Research Foundation (2020A1515010776 and 2020B1515020057) and the Beijing Nova Program (Z181100006218114 and Z181100006218110) to M.N. and P.L..Conflict of Interest: The authors declare no competing interests.Ethical Approval: This study was approved by the ethics committee of the Center for Disease Control and Prevention (CDC) of Guangzhou (GZCDC-ECHR-2020P0002). Written informed consent was obtained from patients about the surveillance and data related to disease control and further analysis. All information regarding individual persons has been anonymized in this study.


Subject(s)
COVID-19
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256776

ABSTRACT

Disrupted antiviral immune responses are associated with severe COVID-19, the disease caused by SAR-CoV-2. Here, we show that the 73-amino-acid protein encoded by ORF9c of the viral genome contains a putative transmembrane domain, interacts with membrane proteins in multiple cellular compartments, and impairs antiviral processes in a lung epithelial cell line. Proteomic, interactome, and transcriptomic analyses, combined with bioinformatic analysis, revealed that expression of only this highly unstable small viral protein impaired interferon signaling, antigen presentation, and complement signaling, while inducing IL-6 signaling. Furthermore, we showed that interfering with ORF9c degradation by either proteasome inhibition or inhibition of the ATPase VCP blunted the effects of ORF9c. Our study indicated that ORF9c enables immune evasion and coordinates cellular changes essential for the SARS-CoV-2 life cycle. One-sentence summarySARS-CoV-2 ORF9c is the first human coronavirus protein localized to membrane, suppressing antiviral response, resembling full viral infection.


Subject(s)
COVID-19
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256735

ABSTRACT

There is an urgent need to understand the pathogenesis of the severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) that leads to COVID-19 and respiratory failure. Our study is to discover differentially expressed genes (DEGs) and biological signaling pathways by using a bioinformatics approach to elucidate their potential pathogenesis. The gene expression profiles of the GSE150819 datasets were originally produced using an Illumina NextSeq 500 (Homo sapiens). KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO (Gene Ontology) were utilized to identify functional categories and significant pathways. KEGG and GO results suggested that the Cytokine-cytokine receptor interaction, P53 signaling pathway, and Apoptosis are the main signaling pathways in SARS-CoV-2 infected human bronchial organoids (hBOs). Furthermore, NFKBIA, C3, and CCL20 may be key genes in SARS-CoV-2 infected hBOs. Therefore, our study provides further insights into the therapy of COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , COVID-19 , Respiratory Insufficiency
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.16.20176065

ABSTRACT

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report an in-depth multi-organ proteomic landscape of COVID-19 patient autopsy samples. By integrative analysis of proteomes of seven organs, namely lung, spleen, liver, heart, kidney, thyroid and testis, we characterized 11,394 proteins, in which 5336 were perturbed in COVID-19 patients compared to controls. Our data showed that CTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. Dysregulation of protein translation, glucose metabolism, fatty acid metabolism was detected in multiple organs. Our data suggested upon SARS-CoV-2 infection, hyperinflammation might be triggered which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart and thyroid. Evidence for testicular injuries included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. In summary, this study depicts the multi-organ proteomic landscape of COVID-19 autopsies, and uncovered dysregulated proteins and biological processes, offering novel therapeutic clues. HIGHLIGHTSO_LICharacterization of 5336 regulated proteins out of 11,394 quantified proteins in the lung, spleen, liver, kidney, heart, thyroid and testis autopsies from 19 patients died from COVID-19. C_LIO_LICTSL, rather than ACE2, was significantly upregulated in the lung from COVID-19 patients. C_LIO_LIEvidence for suppression of glucose metabolism in the spleen, liver and kidney; suppression of fatty acid metabolism in the kidney; enhanced fatty acid metabolism in the lung, spleen, liver, heart and thyroid from COVID-19 patients; enhanced protein translation initiation in the lung, liver, renal medulla and thyroid. C_LIO_LITentative model for multi-organ injuries in patients died from COVID-19: SARS-CoV-2 infection triggers hyperinflammatory which in turn induces damage of gas exchange barrier in the lung, leading to hypoxia, angiogenesis, coagulation and fibrosis in the lung, kidney, spleen, liver, heart, kidney and thyroid. C_LIO_LITesticular injuries in COVID-19 patients included reduced Leydig cells, suppressed cholesterol biosynthesis and sperm mobility. C_LI


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.08.18.256578

ABSTRACT

There is an urgent need for a safe and protective vaccine to control the global spread of SARS-CoV-2 and prevent COVID-19. Here, we report the immunogenicity and protective efficacy of a SARS-CoV-2 subunit vaccine (NVX-CoV2373) produced from the full-length SARS-CoV-2 spike (S) glycoprotein stabilized in the prefusion conformation. Cynomolgus macaques (Macaca fascicularis) immunized with NVX-CoV2373 and the saponin-based Matrix-M adjuvant induced anti-S antibody that was neutralizing and blocked binding to the human angiotensin-converting enzyme 2 (hACE2) receptor. Following intranasal and intratracheal challenge with SARS-CoV-2, immunized macaques were protected against upper and lower infection and pulmonary disease. These results support ongoing phase 1/2 clinical studies of the safety and immunogenicity of NVX-CoV2327 vaccine (NCT04368988). HighlightsO_LIFull-length SARS-CoV-2 prefusion spike with Matrix-M1 (NVX-CoV2373) vaccine. C_LIO_LIInduced hACE2 receptor blocking and neutralizing antibodies in macaques. C_LIO_LIVaccine protected against SARS-CoV-2 replication in the nose and lungs. C_LIO_LIAbsence of pulmonary pathology in NVX-CoV2373 vaccinated macaques. C_LI


Subject(s)
COVID-19 , Lung Diseases
9.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-35869.v1

ABSTRACT

In the middle of March, the World Health Organization declared the outbreak of COVID-19 caused by SARS-CoV-2 infection a global pandemic. While China experienced a dramatic decline in daily growth rate of COVID-19, multiple importations of new cases from other countries and their related local infections caused a rapid rise. Between March 12 and April 15, we collected nasopharyngeal samples from 109 imported cases from 25 countries and 69 local cases in Guangzhou, China. In order to characterize the transmission patterns and genetic evolution of this virus among different populations, we sequenced the genome of SARS-CoV-2. The imported viral strains were assigned to lineages distributed in Europe (33.0%), America (17.4%), Africa (25.7%), or Southeast/West Asia (23.9%). Importantly, 10 imported cases from Africa formed two novel sub-lineages not identified in global tree previously. A detailed analysis showed that the imported viral strains from Philippines and Pakistan were closely related and within the same sub-lineage, whereas Ethiopia had varied lineages in the African phylogenetic tree. In spite of the diversity of imported SARS-CoV-2, 60 of 69 local infections could be traced back to two specific small lineages imported from Africa. A combined genetic and epidemiological analysis revealed a high-resolution transmission network of the imported SARS-CoV-2 in local communities, which might help inform the public health response and genomic surveillance in other cities and regions. Finally, we observed in-frame deletions on seven loci of SARS-CoV-2 genome, some of which were intra-host mutations, and they exhibited no enrichment on the S protein. Our findings provide new insight into the viral phylodynamics of SARS-CoV-2 and beta coronavirus.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL